
-~ - 
- --- - • -

~~~
-

28

i~~~/i~a
2 l-Jl_ S (~~)(4.11) r =  
E E CIC

I + Jl-cy~ 1 +~~~~~~
(
~~

)

Here F is the adaptive factor discussed in Section 3 for the adaptive SSOR-CG

procedure.

Having decided to change we let

(4.12) [s
E
(s)) 1new 

= max(S~(&), S~(~~), S~
( & ) )

where 5’ (.~ 
) and S”(~ ) are determined as follows. To get S’ (

~~ ) we solveE to E (j) E w

thit Chebyshev equation

lö
(n) lw 2r P/” 2 

_____(4 .13) = _____ 
r

jo ’~ tlw l+r~ 14”

where r is given by (4.11) and

____________________ 2
1 - ff~~(s (~ ) / S ’( ~ ) )

(4.14) E to E w
1 + ‘/1 - (S~(~$)/S~(~~))

We compute s”(~ ) by the Rayleigh quotient
E t o

~~~~~~~ 8
(n)~

(4 .15) S”(.~ 
) = /E to

Having computed the new value of S
E (&

to) we let s = n and then use

• (4.5)-(4.8) to continue the iteration process.

• - • -—~~~- . •  —‘—_~•~~ t -. ~~~~~~~~~~~~~~~~~~~~ ~~- •— - -~~~~~~~~~ -~
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The overall computational procedure is illustrated in Figure 4.1. As in

the case of the SSOR-CG method, we determine the pseudo-residual ~~~
h1) 

for the

SOR method for each iteration as well as the pseudo- residual f’)(n) for the SSOR

method . This saves matrix/vector multiplications by W. At the beginning of

each iteration we compute and ~(n) - Usually this is done in a straight-

forward way, but if n = s+l we use a special procedure as described below. We

then carry out our stopping test. We use (3.18’) if a good estimate M
E

(B) is

available for M(B), Otherwise we use (3.20’).

• If the process has not converged, we test whether 
~~~~~ 

should be

changed . If the test (4.9) is satisfied or if n = 0, we compute (S (& ) )  =
E ~ new

max(S ( - ~ ) , S ’(~ ), S”(~ ) )  where S’(~ ) is the solution of the ChebyshevE E (5) E ~ - E

equation and S”(,1i ) is the Rayleigh quotient (4.15). With the new value of
E a

(n+1)we compute p 1, ~~~~ and u and are ready for the next iteration . 

• -=L. 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We use a special procedure whereby one can avoid matrix/vector multiplica-

tions by W and, at the same time1 can compute the Rayleigh quotient S”(~ ) each

time 
~~~~~ 

is changed without an extra matrix/vector multiplication. When

we decide to change S
E
(I
~~
) we compute the vector

(4 .16) .-‘.(n+l) 
= 

(n) 
+

It can be shown that

(4.17) ~(n+l) = 
“..(n+l) 

+ k - 
“<T1+1) 

=

Thus, for S~(.~ ) we have by (3.11) (which holds f or ~(n+l) and ~ (n+1))

(W~~~~,W~ 5
(Tt)

) 
~A
(n) i~..~.(n+l)(4 ) f l( ) _  to (D , D

E to (W ’
~~,W~~~~) (D~A(n), D~A

(n)
)

where

(4 .19) ~ (n-s-l) 
= 

~~ ~~~~~ + k
(F) 

-
CL) (1)

We note that to get the Rayleigh quotient S~(~~) we have essentially

had to do an extra SSOR iteration. However, we can recover this by using a special

procedure to get A(T5) and ~(n) on the next iteration. Thus it can be shown

that if n = s+l then

~(n) 
= ~ (n) 

+ -

[ 

~ (n) 
= ~ (n) 

+ (1-
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Fully Adapt~ve SSOR-SI Procedure

So far we have been considering the SSOR-SI method for fixed to where we snake

an initial estimate S
E
(i
~

) for S(~~) and then improve S
E
(ê) adaptively .

As stated in Section 3, S(s) is a very slowly varying function of to, and it

is not essential that the value of to be optimal. Thus it would not be unreason-

able to guess at a value of to, say 1.8, and use the partially adaptive procedure

described above. However, as we show, it is not difficult to improve a- as

well as S
E
(S) adaptively .

When we let to as well as SE
(a
~~
) be determined adaptively we refer to

the procedure as “fully adaptive ” Actually, as in the case of the adaptive

SSOR-CG method considered in Section 3 , we work with M
E
(B), an estimate of

M(B). Also, as in Section 3, we assume that we have an upper bound ~ for S(LU).

__ - ~~~ — - • • -~~ -—- -~~- --- -



_ _ _ _ _ _ _ _ _ _ _ _ _

33

The overall procedure for the fully adaptive SSOR-SI method is shown

in Figure 4.2. To begin with, we estimate a value of M
E
(B) such that 0 < M

E
(B) < M(B)

and also such that M
E
(B) < 2I~

’ 
- We compute to by (2.20) with M = M

E
(B) and

S
E
(t
~~
) by (2.21).

At the beginning of each iteration we compute and ~~~~~ We then

• apply the stopping test (3.18’). If convergence has not occurred, we proceed to switch

(~J . Initially, ~~~
‘
\ = • However, if at any time w* can be shown to be

satisfa ctory (using (3,27)) we let (i’; (~~~
. and from then on we will not consider

• changing M
E
(B). We then apply test (4.9) to see whether M

E
(B) should be changed.

If so, or if n = 0, we proceed as follows. We compute a new value of 
~~~~~ 

as

indicated. The value of S”(~B ) given is the Rayleigh quotient, as was shown in ourE U~

discussion of the partially adaptive process. Having found a new value of S
E(S), we

• proceed to get M
E

(B) by (3.28). Then we compute a new to and a new S~(~~). We

then compute %+i’ ‘~
‘n*l’ 

and ~
(n+l) 

and are ready for the next iteration .

- ~~~~~~~~
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5. Numerical results. Several experiments were run for the SSOR method

using the conjugate-gradient adaptive scheme and using the semi-iterative fully

adaptive scheme. The following problem, which we call “model problem P,” was

used as a test case.

~n = -l in Q

(5.1) u =  0 on~~~

0 = (0,1) x (0,1) -

Numerical experiments on snore general problems, such as those considered in Young

• [1974] are now being carried out.

The five-point finite difference method was used to generate the matrix

problem

(5.2) A u = b

for mesh sizes of h = 1/20, 1/40 , and 1/80. For these cases the parameters ~~,

and the bound for S(e ), as given by (2.30), (2.31), and (2.32) (with ~ = 1/4),

~
‘
~1

respectively, are shown in Table 1,

TABLE 1
• VALUES OF OPTIMUM PARAMETERS FOR MODEL PROBLEM P

h 1/20 h = 1/40 h = 1/80

.98769 .99692 .99923

1.72874 1.85445 1.92448

S (.~ ) .85451 .52448 .96151
to
’

In our test cases, since we were interested in studying the effec tiveness

of the adaptive schemes ra ther than studying effec tiveness of stopping procedure s,

we genera ted the exact solution, U, to the problem (5.2) and iterated until the

following condition was satisfied:

- - -----
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(n)
(5•3) K 11u - U~ 1 

= 10 -exact 
~i~;ii 

—

The adaptive procedures , as described in Sections 3 and 4, were used for

the SSOR- CG and for the SSOR-SI schemes, respectively. The stopping test (5.3)

rather than (2.18’) was used in both cases. For the SSOR-SI method only the

fully adaptive scheme was used. No test cases were run using the partially adap-

tive procedure . For the adaptive process, an initial guess ~~°) was made for

p S(B). It is necessary that ~~, and in the absence of a better guess

can be set equal to zero. Initial estimates for to and S(s ) were obtained

from (2.20) and (2.21) using the estimated parameter 40) - The adaptive procedures

of Sections 3 and 4 were then used to correct the estimated parameters.

A non-adaptive process was also used for both methods . In the non-adaptive

process a value of to was chosen and not changed. In the case of the non-adaptive

SSOR-SI method a value of S(~~) was used based on (2.21) with 
~E 

replaced by

the true value of ~ and with ~ =

Tab le 2 gives the results for the adaptive and non-adaptive procedures

where to = .82 was used for the non-adaptive process. (This corresponds to using

(2.20) with = 0 and ~ = 1/4.) For the adaptive cases was initially zero.

The value F = 3/4 was used for the adaptive cases.

For the values given for the adaptive SSOR-CG method, the numbers in paren-

theses correspond to a different adaptive scheme where at least two iterations were

used with each parameter set. The numbers look somewhat better than in the original

adaptive case.

*
- Clea rly, this procedure is snore favorable to the non-adaptive SSOR-SI

method than would be the case if we had used the more reasonable procedure of
choosing a value of and then calcula ting to and a bound for S(J ) by (2.18),
letting ~ = 1/4. to 

- -5- — — S  5- -
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TABLE 2 . COMPARISON OF ADAPTIVE AND NON-ADAPTIVE SCHEME S

SSOR- SI

h = 1/20 h 1/40 h = 1/80

Non- adaptive

= .82 32 67 12)

optimum parameters* 17 25 35

Fully adaptive -

23 26 39

SSOR- CC

h =  1/2) h =  1/40 h =  1/80

Non-adaptive

= .82 17 28 52

optimum parameters* 12 17 23

Adaptive

-(0) 
= 0 16 (14) 21 (20) 32 (27)

*
See Table 1

—5- -5 5-— — 5 - -  — —  —---5-- ---
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Figure 5.1 shows the number of iterations required to satisfy the con-

vergence criteria (5.3) for the non-adaptive SSOR-CG method and for the non-

adaptive SSOR-SI method . In each case a value of to was chosen and the non-

adaptive procedure was used as described above . It should be noted that the

SSOR-CG curve is much flatter than the SSOR-SI curve, and also lies considerably

below the SSOR-SI curve. This indicates that the SSOR-CG procedure is much

less sensitive to choice of to. The advantage of the SSOR-CG method would probably

have been even greater if we had not used the true value of p in computing

the bound on S(t~ ) for the non-adaptive SSOR- SI scheme.

The results presented in Tables 3 and 4 show how the parameters 
~E’ ~~

and S(s 
~E 

changed during the adaptive process. In the cases considered, the

initial 40) was set equal to zero. It is evident that after only two or three

iterations, good values of the parameters are available through the adaptive

process. Furthermore, even the iterations occurring before the selection of

the final parameter set are not “wasted” iterations since the iterant ~
(n)

is being improved, although not as much as would be the case with the optimum

parameterS. 

•—- • • • • - -•_ _-—~~---- —- - -—- 5 - -  • —
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Number of
Iterations

75

N
50 - 

SSOR—SI

/

:::
1.0 1.2 1.4 1.6 1.8 to

1 
2.0

Omega (w)

Figure 5.1. Model Problem P. #Iterations vs. w, h = 1/40

Non-adaptive Schemes
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TABLE 3. SSOR-SI. FULLY AI~ PT1VE

(F i/4 in all cases)

to S(.~s)u ’E

IL 1/20

Optimum Value .98769 1. /2814 .85451

Iteration No. 1 0 .828427 .17157

“ 4 .97851 1.6565 7 .812156

“ 15 .98 742 1. /.~~2l .853041

“ “ Convergence

h 1/ 40

Optimum Va lue .99o9~ 1.85445 .92448

l t c r a t i on  No . 1 0 .828427 .171 S 7

4 .990 34 1 7559 / 8 700 6

“ 8 .99633 1.84218 9178~

Convc rgt’ncc

h 1/80

Optimum Va lue .99923 1.92448 .96151

Iteration No. 1 0 82842/ .17157

4 99540 1.82504 90852

“ 8 .99896 1.91280 .95543
.5’)

• —__ _~~~~?,,-________ _____ __.~-:__,~~~~ —— .5-—
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TABLE 4. SSOR—CG ADAPTIVE
(F = 3/4 in all cases)

to S(&~)~
h = 1/20, k = 1

True Value .98769 1.72874 .85451

Iteration No. 1 0 .828427 .17157

“ 3 .97851 1.65657 .812156

“ 7 .98742 1.72621 .853047

“ 16 Convergence

h=1/40, k = 2

True Value .99692 1.85445 .92448

~Iteration No. 1 0 .8284 7 .17157

“ “ 4 .9913 7 1.77713 .871171

20 Convergence

= 1/80, k =

True Value .99923 1.92448 .96151

kteration No. 1 0 .82847 .17157

“ 3 .99348 1 79784 89047

“ 7 .99881 1.91429 .94801

32 Convergence

_ _ _ _ _ _ _ _ _ _  — - -- — -5 - 5 - - - -  --5,- - -- --
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-(0)Many cases were run for various values of and for various values

of F. Figures 5.2 and 5.3 illustrate the effect of varying 4n the adap-

tive procedure . The solid lines represent the non-adaptive case; i.e., 40~ is

chosen and the parameters are ca lcula ted ba sed on ~4~
) 
and are not changed

(u- is fixed throughout the procedure). The dashed line represents the fully

adaptive procedure; here 40) is specified and all parameters are updated when

• the improved parameter set is calculated . The ordinate represents the number

of iterations required for convergence and the abscissa is 40) - The graphs

are drawn for h 1/40, but these results are representative of all of the

test cases

In general, lowering the value of F means there will be fewer

parameter changes, and setting F closer to unity has the effect of fine-tuning

the procedure . In this case there will be more parameter changes and the final

set should be closer to the optimum values . However, when the parameters are

changed , the convergence rate of the overall method drops off initially and

then gradually increases. Thus , changing parameters too often can have the net

effec t of lowering the overall convergence rate. In choosing F, one must balance

the effect of changing parameters against the gain which will be realized from

improved pa ramete rs . Figure 5.4 is a graph of the number of iterations required

versus the parameter F for the SSOR-CG adaptive procedure and for the SSOR-SI

fully adaptive procedure. In general, this procedure does not seem to be too

sensitive to values of F as long as they are not close to zero or to one.

_ _ _  5- — •~~~~~~~~~~~~~~~~~-= ---—-5- - - -
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35 SSOR—SI
ON-ADAPTIVE

SSOR-SI FULLY .

\ ADAPTIVE

25 - ‘ .-

20
I — I

.5 .8 .9 -(O) .975 .99 1.0

Figure 5.2.  Iterations Vs. ~~
0
~ Fu1ly Adaptive and Non-adaptive

SSOR-SI, h = 1/40

30

25

SSOR—CG NON-ADAPTIVE

20 — — — —
SSOR-CG ADAPTIVE - 

- -

15

I- I I I~~
.5 .8 .9 975 .99 1.0

Figure 5.3. Iterations vs. 40)Adaptive and Non-adaptive

SSOR-CG, h = 1/40
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6. Stmm~ar~y arid conclusions. These preliminary test cases seem to indicate

that the adaptive procedures presented in this paper are effective when they are

coupled with both the SSOR-CG and the SSOR-SI methods. It has been shown that for

this problem very few iterations are required to obtain a good set of parameters,

and these preliminary iterations are not wasted, in the sense that the vector

is being improved on each iteration. The procedures are effective even when

the initial guess of 
~E 

is the worst possible; i.e., ~40)= 0. It has been

shown that in this case the number of iterations using the adaptive scheme is

not too many more than the number of iterations which would have been required

if the optimum parameters had been known from the start .

These results are preliminary in the sense that numerical experiments have

been carried out only for the model problem P. We are now testing these procedures

on a more general class of self-adjoint elliptic problems.
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